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Preface
The design and development of automated approaches to improve the performance 
of wireless networks are considered among the challenging research issues in the 
field of wireless and mobile networking. The application of artificial intelligence 
(AI), machine learning (ML), and deep learning (DL) is relatively limited in the field 
of wireless networking systems and needs new models and methods to be devel-
oped to improve performance. Wireless network technologies such as the Internet 
of Things (IoT), Industry 4.0, Industrial Internet of Things (IIoT), VANET, and 
FANET-based applications demand data-driven approaches which involve complex 
mathematical models. These models can be automated and optimized using ML and 
DL techniques. AI-, ML-, and DL-based schemes are more adaptable to the wireless 
environment. These models provide an optimized way to reduce the complexity and 
overhead of the traditional tractable system models.

The large amount of data produced by wireless networks need to be stored and 
processed quickly to support real-time applications. This necessitates the attraction 
of data-driven approaches such as AI-, ML-, and DL-based schemes toward wireless 
communication and networking. Compared to traditional technologies, new tech-
nologies such as cyber-physical systems, cloud computing, virtualization, FANET, 
and VANET will have diverse service requirements and complicated system models 
that are harder to manage with conventional approaches properly. To cater to these 
needs, ML- and DL-based techniques can be employed in this domain to achieve 
automation. At present, automated learning algorithms in mobile wireless systems 
are in a growing phase, and the performance of these models needs to be optimized. 
This book aims to cover the state-of-the-art approaches in AI, ML, and DL for build-
ing intelligence in wireless and mobile networking systems.

It provides the latest advancements in the field of machine learning for wireless 
communications, encourages fruitful development on the challenges and prospects 
of this new research field. It provides a broad spectrum to understand the improve-
ments in ML/DL that are motivated by the specific constraints posed by wireless 
communications.
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1.1  INTRODUCTION

In this age in which most platforms and services are automated, the network domain 
stands as no exception. Automation is applied to the various processes in the net-
work life cycle that previously involved manual, time-consuming and unreliable 
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procedures. The network lifecycle consists of repeatable processes such as prepar-
ing, planning and designing, implementing, deploying, operating and optimizing the 
network. Traditional networks are slow and unresponsive as they are manually man-
aged and hardware-centric. Therefore, to structure the networking systems better and 
intelligently control the cycle, software-defined networking (SDN) was introduced 
(1). The SDN approach enables a programmed and centrally controlled network that 
drastically improves the performance of the network.

It is beneficial to automate wireless networking systems as this would improve 
operational efficiency by reducing the number of network issues. As a result, the 
time involved in delivering solutions to those issues would also be minimal. 
Automation simplifies operations and makes the network cost-effective. These 
networks handle repetitive tasks with ease and are not susceptible to human 
errors. This establishes better control of the network and enables more innova-
tions through the insights offered by network analytics. Automated networks are 
more resilient and experience lesser downtime. Hence, there has been a rise in 
the use of machine learning (ML) and deep learning (DL) techniques in network 
automation.

1.2  ML

ML is a subsection of artificial intelligence (AI) that equips computers to learn from 
data without having to explicitly program the learning algorithm. Developing an 
ML model capable of making accurate decisions consists of many stages beginning 
with the data collection phase. The data collected are usually split into two parts, 
namely, a training set that trains the ML model and a testing set used to determine 
the performance of the fully trained model. The data collected are then preprocessed 
in the data preparation stage. Then an appropriate algorithm to solve the problem at 
hand is determined. This is followed by the training phase during which the model 
identifies patterns and learns how to distinguish between the various input values 
provided. Once the model has been trained, it can be evaluated on a new set of data. 
These evaluation results are used to carry out parameter tuning and improve the 
performance of the model. Finally, the best network is used to make predictions. 
ML algorithms are useful as they can discover new patterns from massive amounts 
of data. These are several categories of ML algorithms that are classified based on 
multiple criteria.

Depending on whether or not these networks are trained with human supervision, 
ML algorithms are broadly classified into supervised learning, unsupervised learn-
ing and semi-supervised learning. The most widely used ML algorithms under each 
of these classes are discussed in the following sections.

1.2.1  Supervised Learning

ML models that utilize labeled data sets for training perform supervised learning. 
The algorithm relies on the output labels to form a relation between the input vari-
able or the independent variable (X) and the output variable or the dependent variable 
(Y). The mapping function that denotes the relation between X and Y is represented 
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as f. Supervised learning can be further classified into regression and classification 
problems based on the task performed by the algorithm.

Problems that involve the prediction of a numerical or continuous-valued out-
put are known as regression problems. For example, if the price of a house is to be 
determined by leveraging features such as house plot area, number of floors, number 
of rooms and number of bathrooms, we would need input training data and the cor-
responding price labels. Using these data, a supervised learning model that predicts a 
numerical price value can be developed to solve this regression problem. Algorithms 
such as linear regression and logistic regression are popular regression-based ML 
algorithms that are used in supervised learning.

The second class of supervised learning problems is known as classification prob-
lems. Classification tasks involve mapping the test data to two or more categories. 
In these problems, the ML model is expected to provide only discrete output val-
ues that can be translated into one of the output classes. The most common type of 
problem that falls under this category is the image classification task. For instance, 
if images of cats and dogs had to be classified, then a supervised learning model for 
classification must be employed. Some well-known algorithms that fall under this 
category consist of k-nearest neighbors (KNNs), the Naïve Bayes model, Support 
Vector Machines (SVMs), decision trees and random forests.

1.2.1.1  Linear Regression
Linear regression is an algorithm that models the mapping function f as a linear func-
tion. It assumes that there is a linear relationship between the input and output data:

	 y x= +β ε . � (1.1)

In Equation 1.1, x is the independent variable that represents the input variable and 
y is the dependent variable that represents the output variable. The slope parameter, 
β, is termed as a regression coefficient, and ε is the error in predicting the y value. 
Here, y is depicted as a function ( f) of x. The test data are entered into this linear 
function to predict the output value. Fig. 1.1 shows the prediction of y using a single 
input feature and the simple linear regression.

1.2.1.2  Logistic Regression
Input values are fed into the logistic regression model, which uses the logit function 
or the sigmoid function as shown in Equation 1.2 to produce output predictions that 
lie between 0 and 1. The logistic regression model can also be used to solve classifica-
tion problems as the continuous-valued output values correspond to the probability of 
an instance being associated with a certain class:

	 P y x y x
e
y x

= ±( ) = ( ) =
+

−( )
1

1

1
| T

T
, .β β

β
σ � (1.2)

In Equation 1.2, β = (β0, . . . , βd) is a vector of dimension d, known as the model 
parameters, y is the class label which is ±1 in the equation. The vector x = (1, x1, . . . , 
xd) are the covariates or input values (2).
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1.2.1.3  KNNs
KNN is a classification model that labels the nearest patterns to a target pattern x. 
The class label is assigned to points based on a similarity measure in data space. 
Equation 1.3 defines the KNN for a binary classification problem:

	 f x
if iN x y
if iN x yKNN

k

k

′
′

′( ) =
∑ ( ) ≥

− ∑ ( ) <








1 0

1 0

� � � ,�

� � � ,� �
. � (1.3)

Here, y can either take the value of 1 or −1. Nk(x′) denotes the indices of K of 
the nearest patterns. K is the neighbourhood size. It is used to define the locality 
of the KNN. For smaller neighbourhood sizes (K <= 2), scattered patterns of differ-
ent classes are obtained whereas, for larger neighbourhood sizes (K > 19), minority 
groups are ignored (3).

1.2.1.4  Naïve Bayes
The Naïve Bayes algorithm performs best on large data sets. This algorithm func-
tions on the assumption that the various features of the data set are independent of 
each other. Then the Naïve Bayes model finds the probability of a new test sample 
belonging to a certain class and uses this parameter to perform classification. The 
model predicts the probability that a new sample, x = (x1, . . . xa), belongs to some 
class y, which is represented as P(y | x). Here, xi is the value of the attribute Xi, and  
y ∈ {1, . . . , c} is the value of the output class Y.

FIGURE 1.1  Simple Linear Regression.
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1.2.1.5  SVMs
SVMs use hyper-plane classifiers to separate the data points into their respective 
classes. The hyper-plane would be a point for or a one-dimensional data set, a line 
for a two-dimensional data set, a plane for a three-dimensional data set and a hyper-
plane for any data set having a dimension higher than three. A  linearly separable 
SVM classifier is denoted by Equation 1.4 (4):

	 ax by c+ + = 0 . � (1.4)

Here, (x,y) are the data points. The slope of the linear classifier is given by (a/b), 
and the intercept term is (c/b).

1.2.1.6  Decision Trees and Random Forests
One of the most basic classifiers, a decision tree performs two tasks, learning and clas-
sification. Based on the training data set, the decision tree learns the split criterion. 
This phase is known as the learning phase. The phase that follows the training phase is 
the classification phase, during which the test data are classified using the trained tree. 
The tree has a structure resembling a flow chart and consists of three parts known as 
the leaf node, the branch and the internal nodes. Each branch of the tree represents the 
output obtained on a test condition. The bottommost node that holds the final predicted 
output class is called the leaf node. A decision tree is one of the simplest machine 
learning classifiers and is easy to comprehend. However, one of the challenges faced 
by the decision tree algorithm is that it is more likely to overfit the data. Therefore, it is 
a weak classifier. Hence, many decision trees are combined to form a stronger classifier 
known as a random forest. The random forest is an ensemble model that provides its 
final classification by choosing the most popular class predicted by the decision trees 
for a data sample as the final classification for that particular data sample (5).

1.2.2 U nsupervised Learning

Unsupervised learning involves the discovery of previously unknown patterns 
from unlabeled data. Unlike supervised algorithms, unsupervised algorithms can 
help address a wider range of problems as it is easier to obtain unlabeled data. 
Unsupervised ML algorithms can fall under three types, which include clustering 
algorithms, visualization and dimensionality reduction algorithms and association 
rule learning algorithms. This classification is based on the type of task performed 
by the algorithm.

Clustering algorithms find a structure in the uncategorized data. Similar data 
points are grouped together. For instance, segregating consumers into groups, with 
the help of clustering models, would help businesses target their customers better and 
get the best return on investment. k-means and hierarchical cluster analysis (HCA) 
are common clustering algorithms.

Visualization and dimensionality reduction algorithms perform related tasks. 
A visualization algorithm is used to model and plot unstructured data as a two- or 
three-dimensional representation. This helps in identifying unsuspected patterns in 
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the data. For example, visualizing the most spoken languages in the world would 
require such visualization algorithms. Dimensionality reduction is a technique that 
merges correlated features into a single feature and, as a result, simplifies the avail-
able data without losing too much information. The mileage of a car may be cor-
related with the age of the car. Therefore, using dimensionality reduction or feature 
extraction these correlated features can be merged into a single feature named the 
wear and tear of the car. By utilizing this technique, the model will train faster 
and lesser memory space is required to hold the data. Principal component analy-
sis (PCA) and kernel PCA are popular visualization and dimensionality reduction 
algorithms.

The goal of association rule learning algorithms is to explore large data files and 
discover interesting patterns and new relations between the various features of the 
data. Association rule learning algorithms may be applied in supermarkets, whereby 
the algorithm may reveal that people who buy bread are more likely to buy bread 
spreads also in that purchase. Therefore, it would be ideal to place these two products 
next to each other. Some association rule learning algorithms include apriori and 
ECLAT.

1.2.2.1  k-Means
k-means is one of the primitive clustering algorithms that can be used for grouping 
problems. A  group of randomly selected centroids are used as the initial centres 
of k clusters. k represents the number of clusters required. This parameter is also 
set before running the k-means algorithm. The algorithm then performs a series of 
calculations that influence the new set of k centroids for the next iteration. After com-
pleting the defined number of iterations, k clusters are obtained. k-means is computa-
tionally faster than HCA and produces tighter and more spherical clusters. However, 
it is challenging to determine the perfect k value (6).

1.2.2.2  HCA
HCA is a clustering algorithm that can be classified as agglomerative HCA and divi-
sive HCA. In agglomerative clustering, each input data sample is assumed to be an 
individual cluster. Similar clusters then merge into one another until ‘k’ distinct clus-
ters are obtained. This happens after every iteration is complete. The clusters are 
grouped based on a proximity matrix that is updated every time the iteration is com-
plete. The divisive HCA algorithm initially considers all the data points to belong to 
a single cluster. Data points that are not similar are then separated from the cluster. 
This algorithm is not as widely used as the agglomerative clustering technique.

1.2.2.3  PCA
The PCA dimensionality reduction technique is used to convert data sets having a 
large number of features into ones with fewer features. It can only be applied to linear 
data sets which are data sets that are linearly separable. The data set, having fewer 
attributes, would still contain most of the information. Data sets having a smaller 
number of features are easier to explore and analyse. ML algorithms train faster on 
the data sets that have undergone dimensionality reduction. In PCA, to ensure that 
every variable has an equal weight in contributing to the analysis, the variables are 
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initially standardized. Then, the covariance matrix of the data set is constructed. The 
principal components of the data are determined from the eigenvalues and eigenvec-
tors of the covariance matrix. The principal components are the updated set of fea-
tures that can be represented as a linear combination of the original set of features. 
This technique greatly increases the classification accuracy of a model (7).

1.2.2.4  Kernel PCA
Kernel PCA is an extension of PCA. It is a dimensionality reduction technique that 
can be applied to nonlinear data sets. A kernel function is used to project the data 
set into a feature space where it is linearly separable. The kernel function acts as a 
replacement to the covariance matrix calculated in PCA. It is used to calculate the 
eigenvalues and the eigenvectors that are required to obtain the principal components 
of a given data set. The most commonly used kernels are the polynomial kernel and 
the Gaussian kernel. Polynomial kernels are used for data sets modelled with non-
linear decision boundaries that are polynomial in shape, whereas, for data points that 
are distinguished based on the distance from a centre point, Gaussian kernels would 
be the preferred kernel function. Kernel PCA has an advantage over PCA as real-
time data are more likely to be non-linear in nature (7).

1.2.2.5  Apriori
The apriori algorithm is a popular algorithm used in data mining to determine the 
relationship between different products. These relations are termed as association 
rules. The various items in the data set are mined and the set of items or the item 
set that occurs most frequently is determined using the apriori algorithm. The main 
factors that are used in the apriori algorithm are support, confidence and lift. The 
support is the probability that two items in the data set (A and B) occur together. 
Confidence is the conditional probability of B, given A. Lift is the ratio of support to 
confidence. Using these parameters and a breadth-first search approach, the apriori 
algorithm can determine the frequent item sets in the data set (8).

1.2.2.6  Equivalence Class Transformation Algorithm (ECLAT)
On the other hand, the ECLAT utilizes a depth-first search approach to determine 
the frequent item sets in a given data set. The input to this algorithm is a transaction 
database. A set of transactions is collectively defined as a transaction database and 
a transaction is an itemset. The algorithm discovers frequent item sets and associa-
tion rules from the transaction database. As the ECLAT algorithm uses a depth-first 
search in the database, it is faster than the apriori algorithm and has a lower memory 
requirement (8).

1.2.3  Semi-Supervised Learning

In semi-supervised learning, algorithms can handle a combination predominantly 
consisting of unlabelled data and a much smaller amount of labelled data. This is par-
ticularly useful in the medical field as it usually takes a lot of time and the expertise of 
medical professionals to label medical scan images. Semi-supervised learning algo-
rithms would require only a few labelled images, thus saving a lot of time and effort.
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1.2.4 A nalysis of ML

ML algorithms are widely used in the wireless networking domain. For instance, 
logistic regression models are used in determining the probability of failure of a 
network or a process. This is a regression problem. Classification problems such 
as predicting root-to-local (R2L) or denial-of-service (DoS) attacks in the net-
working domain can also leverage ML algorithms (9). The ML-based solutions 
to networking problems can also make use of feature engineering techniques like 
dimensionality reduction. Hence, ML in the networking domain can be used to 
speed up and efficiently perform fundamental networking tasks including traffic 
prediction, network security and packet routing. In spite of the multiple advantages 
of ML in networking, ML algorithms still have limitations and face challenges. 
ML algorithms require hand-picked features to train the network, and this tends 
to influence the performance of the model. Another major drawback of ML algo-
rithms is that these algorithms require a huge amount of data for training. Fewer 
available data give rise to the problem of overfitting. More training data could also 
mean higher computation costs. Hence, DL models were introduced to overcome 
these challenges.

1.3  DL

DL is another branch of AI. Unlike ML, DL doesn’t treat all the features equally. 
DL first learns which all features significantly impact the outcome and based on 
that the DL creates a combination of all features for the learning process. This 
property of DL demands a lot of data. A DL model has at least one or more hidden 
layers. The hidden layers fall between the input and output layers. Hidden layers 
are intermediate layers through which the DL algorithm learns which combination 
of features can be used to get the best consistent results. DL is widely used in vari-
ous supervised classification and regression problems. The training of the deep 
learning algorithms happens via back propagation, whereby the algorithm learns 
the parameters for each layer from the immediate next layer and so on. Some of 
the well-known DL algorithms are recurrent neural networks (RNNs), convolu-
tion neural networks (CNNs) and general adversarial neural networks (GANs). 
Generally, these models have many different data-processing blocks before the 
hidden layers. Some of the commonly used blocks are convolution, pooling and 
normalization.

The convolution block use kernels (or filters) to convolute multiple features at a 
time depending on the kernel size to get the spatial information about the data.

The pooling block is used to decrease the feature set size by either taking average 
or max of multiple features. This helps increase the computation speed of the algo-
rithm and, at the same time, preserve the information.

Normalization is used to normalize the data in a feature. This is because due to 
multiple processing steps, the data may change significantly, and if one feature has 
relatively higher numbers than another feature, then the feature with a higher number 
dominant the results. To avoid this, we normalize the data across features so that all 
features are weighted equally before they enter into the hidden layers.
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1.3.1  CNNs

CNNs use convolution block as one of the major functions to get the most prominent 
combination of features to get the results. This approach enables the algorithm to 
successfully capture the temporal and special dependencies between different fea-
tures. The architecture of CNN facilitates the reduction of the size of the features 
which are easier to process, and it gets the results without losing any information.

1.3.2 RNN s

RNNs learn just like CNNs, but RNNs also remember the learning from prior inputs 
(10). This context-based learning approach from RNNs makes them suitable for any 
sequential data as the model can remember the previous inputs and the parameters 
learnt from them. Hence, this architecture is one of the best choices to make when 
dealing with series data as this model uses the data from the past to predict the pres-
ent output values.

1.3.3 GAN s

GANs are used for data augmentation. GANs can produce new data points with the 
probability distribution of the existing data points over N dimensional space. The 
GAN model has two parts: (1) generator and (2) discriminator. The generator is used 
to create fake data points in addition to the existing data points based on random 
inputs, and the discriminator is used to classify the fake points from the existing data 
points. This process is repeated by updating the weights of the generator such that 
it increases the classification error and the weights of the discriminator such that it 
decreases the classification error until we get the fake points to have almost the same 
distribution of the original existing data points. In this way, the GAN model is able 
to generate new data points which have almost same probability distribution as the 
existing data points.

1.3.4 A nalysis of DL

DL is preferred over ML because DL automates the feature selection, and the extrac-
tion process is automated as well. In ML, the features are hand-picked manually and 
fed to the model. DL removes this process with the help of blocks and hidden layers, 
whereby the model learns what combination of the feature works well for the data 
set considered. But at the same time, DL also has its downside. To run a DL model, 
a huge amount of data is required. The amount of data is proportional to the feature 
extraction efficiency of the DL model. So if the data set size is small, then ML algo-
rithms perform better than DL algorithms.

1.4  CONCLUSION

ML and DL models have greatly influenced the way automation happens in today’s 
world. The development of these algorithms has enabled automation in every field, 
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including networks for wireless devices. By implementing ML or DL in a wireless 
networking domain, various processes which involved manual, time-consuming and 
unreliable processes are now being more refined and automated. This way a lot of 
manual errors and time delays are rectified. By removing manual works and auto-
mating them, the operational efficiency to find and resolve network issues is mini-
mal and cost-effective. Hence, the evolution of these ML and DL architectures have 
greatly contributed to the development of the modern network domain.
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